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SUMMARY 

Numerical noise has been a problem with finite element solutions to the shallow water equations. Two 
methods used to reduce the noise level are evaluated, and these results are compared with published 
results for equal-order interpolations. The two methods are mixed-interpolation (quadratic interpola- 
tion for velocity and linear interpolation for sea level) and a spectral form of the wave equation. 
Whereas mixed interpolation removes the troublesome sea level mode, it can still have considerable 
noise in velocity. The spectral wave equation is efficient and does not contain the spurious eigenmodes 
which contribute to high noise levels. 
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INTRODUCTION 

Numerical oscillations are a common occurrence in finite element simulations of various flow 
problems. Their existence is aptly demonstrated by Gray’ and Gray and Lynch2 for the 
shallow water equations and by Sani et aL3 for the Navier-Stokes equations. The results of 
these two types of studies are bridged by a modal ana ly~ i s ,~  where it is shown that the 
spurious modes in sea level in the shallow water equations behave similarly to the pressure 
modes in the Navier-Stokes equations. The existence of the sea level spurious modes is 
caused by anomalies associated with the application of the numerical solution method. The 
zero-frequency eigenmodes with a wavelength of twice the nodal spacing ( 2 4  behave very 
differently from those in the continuum and are the source of the problem. In an important 
paper, Platzman’ has introduced the concept of aliasing between long and short wave 
components due to a folded dispersion relation. This subject is examined in the discussion 
section. 

Over the years three general methods have been employed to mitigate the effects of 
numerical oscillations: (1) damping the short wavelength modes, (2) generation of elements 
without spurious modes, and (3) modification of the governing equations. 

Damping can include the use of spatial filters, the use of excessive viscosity or the use of 
dissipative time-stepping procedures. However, it is difficult to localize the effects of 
damping to small wavelengths only. The necessity for using damping is usually a consequence 
of a choice of an element that contains spurious modes. Furthermore, for most shallow water 
environments, one can show from scaling arguments that bottom friction dominates the 
effects of horizontal viscosity. Hence, viscous damping should only be used in a physically 
realistic sense, such as for a subgrid scale dissipation mechanism. 
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Dissipative time-stepping schemes are used relatively extensively with the shallow water 
equations. Gray and Lynch236 have examined the ability of various time-stepping methods to 
numerically damp the modes of wavelength 2d. However, as with the use of filters, the 
amount of damping is governed by grid spacing, timestep size, and other parameters, all of 
which are determined by network constraints and not by physical dissipation needs. Thus, 
the damping becomes a numerical artefact which is largely uncontrollable. 

Some researchers have taken this method to the extreme and have formulated methods 
which severely attenuate waves with wavelengths of more than 50 times the grid spacing.’ 

In my own experiences, the use of damping in tidal models to remove small scale noise has 
not provided satisfactory results. As a result, I wish to concentrate on the latter two methods 
mentioned above. The desire to generate elements without spurious modes has led to the use 
of mixed interpolation. In this case a lower order interpolation is used for sea level, h, than 
that used for velocity, u, so as to cut off the wavelength for h at 4d and thereby eliminate the 
spurious oscillation mode. This method is used much more extensively in the solution of the 
Navier-Stokes equations3 than in the shallow water equations. A typical ‘good’ element is 
the 6-node triangle with quadratic velocity and linear h. Unfortunately, simpler triangular and 
quadrilateral elements with linear velocity and constant surface elevation (over an element) 
have numerical problems-the 3-node triangular element will not converge when large 
numbers of elements are used’ and the 4-node quadrilateral element has a single spurious 
mode. Of the commonly used linear and quadratic elements, the 6-node triangle and the 
9-node quadrilateral with mixed interpolation have both an absence of spurious modes and 
favourable convergence proper tie^.^ That is not to say that other usable elements do not 
exist; rather, they have yet to be identified and/or tested. The eigenmode analysis provides a 
simple means of determining valid elements. 

Finally, one can convert the governing equations into a set of equations which have the 
property that all wavelengths propagate and there are no zero frequency spurious mode 
solutions. The most common method is to convert the continuity equation into the form of a 
wave equation. This method is, in fact, used more extensively than the literature would 
suggest. As an example, it is used in conjunction with tidal harmonics by Pearson and 
Winter8 and in conjunction with explicit and implicit time-stepping procedures by Lynch and 
Gray.’ For simulations where the surface elevation but not discharge is desired, this method 
may be particularly useful because of the economy in solving for only one dependent 
variable (for the linearized equations) on a relatively coarse mesh. 

In earlier papers, Gray and Lynch’ and Lynch and Gray’ compare the accuracy of a 
primitive equation formulation of the shallow water equations with two modified forms, a 
semi-implicit method and a wave equation method. Whereas the modified forms generally 
performed well, the primitive equation form contained spurious oscillation modes in sea level 
and thus performed poorly. In the study presented here, the results for the primitive 
equations using mixed interpolation are added to this comparison and remove the effects of 
the sea level modes (option 2,  above). In addition, results are presented for a spectral form 
of the wave equation (option 3, above). When the energy spectra of sea level and velocity 
can be represented by line spectra, it is highly efficient to compute the Fourier amplitudes 
directly. Furthermore, the solution method has all the advantages of the wave equation 
schemes. 

In the following sections the governing equations are defined followed by a description of 
the numerical experiments and the numerical results for the various interpolation methods. 
These results are compared with the results using a wave equation formulation. The physical 
implications and limitations of these methods are discussed. 
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GOVERNING EQUATIONS 

The governing equations used in this analysis are the shallow water equations which are 
derived by vertically integrating the Navier-Stokes equations for a fluid flow with a free 
surface." These equations are applicable to gravity-wave propagation in a fluid of constant 
density where the wavelength is much greater than the depth. They are 

the x-equation of motion, 

the y-equation of motion, 

= o  (2) 
av  av  a~ 

and the continuity equation, 

ah a a -+- [(H+ h)u]+- [ (H+ h)v]  = 0 
a t  ax aY (3) 

where density is assumed constant; x, y are Cartesian co-ordinates in the horizontal plane 
(m); u, 2) are depth-averaged velocity components in the x, y directions (mls); t is time (s); h 
is water-surface elevation measured from mean water depth (m); H is mean depth of the 
water column (m); f = 2fi sin 8 is the Coriolis parameter (s-'); R is rotation rate of the earth 
(s-'); 8 is latitude (deg); g is gravitational acceleration (m/s2); 7,,, 7,,, T,,, and 7yy are a 
combination of molecular and Reynolds stresses, and dispersion terms (m*/s"); 7: and 7; are 
components of the surface wind stress (m2/s2); and T! and 7: are components of the bottom 
stress. The Reynolds stress terms are approximated by a symmetric stress tensor with an 
eddy viscosity coefficient adjusted empirically. (Viscosity is not used in the wave equation 
formulations.) Because these stresses are generally small compared with bottom friction for 
the shallow estuarine environments considered here, the eddy viscosity coefficient is kept at a 
small value (1-SO00 cm2/s depending upon refinement) only to dissipate the energy cascaded 
to shorter wavelengths owing to the non-linear nature of the model (see discussion section). 
The surface stresses are specified by a quadratic form of the wind velocity. The Manning- 
Chezy formulation for bottom stress in open channel flows is extended to two dimensions to 
give the bottom stress. For further details see Reference 11. 

The boundary stresses at the surface and bottom are explicitly included in the governing 
equations. As can be shown by scaling, the lateral stresses are important only in the lateral 
boundary layer along the shoreline (or perhaps in internal shear layers) for the shallow 
estuarine environments considered here. Because the computational grid in a numerical 
model is typically larger than the thickness of the shoreline boundary layer, setting the 
tangential velocity to zero along the boundary can distort the velocity field to an unrealistic 
extent. For this reason, no-slip conditions are relaxed at the shoreline and parallel flow and 
zero stress conditions are applied such that there is no mass flux across the boundary. Note, 
however, that when steep shorelines are present, the lateral boundary layer must be taken 
into account.12 

At open boundaries, the water surface elevation and (or) the current velocity can be 
specified so long as the system is not overconstrained. Along these boundaries, the tangential 
shear stress also vanishes. When the Coriolis force is included, there is some difficulty in the 
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open boundary condition owing to the lateral head gradient. Using a constant surface 
elevation causes the velocity to enter and exit at large angles with the normal to the 
boundary as well as creating a 'half eddy' circulation pattern." This problem is largely 
nullified by using a direction-elevation condition where elevation is specified at a central 
node and the velocity direction is specified at all the nodes on the open boundary."," 

Primitive formulation 

The finite element method is applied to (1)-(3) by discretizing the spatial domain into 
elements which are usually of triangular or quadrilateral shape. Depending on the element 
type, the discretized values for velocity and depth are located at nodes which may be at the 
vertices, along the sides, or in the interior of the elements. The value of a variable within an 
element is found by interpolating from the values at the element nodes with the use of basis 
or interpolation functions. (See Reference 13 for further details.) The elements used in this 
analysis are the 6-node triangle and the 3-node triangle, although results from Reference 2 
for 9-node quadrilaterals are also noted. 

The velocity and surface elevation within an element are interpolated as u = [N]{u} and 
h = [M]{h} where [N] are the basis functions for velocity, [MI are the basis functions for sea 
level, and {u} and {h} are the column vectors of the nodal values of velocity and sea level, 
respectively. The residual for the shallow water equations can be evaluated by substituting in 
the interpolated values for the respective variables. The weighted residual is found by 
multiplying each equation by each of the corresponding nodal interpolation functions and 
integrating over the element. The resulting weighted residuals are set equal to zero. The 
element contributions are then summed into a global matrix, which may be efficiently solved 
by a frontal solver14 or by other sparse solution techniques. In the weighted residual, the 
stress terms are expanded and expressed in a divergence form; the order of these terms is 
reduced by the use of integration by parts. Further, the dispersive stress terms containing 
gradients in depth are neglected." As a result, the governing equations can be written in 
matrix form as, 

du 
d t  

M--+Au-fv+gC,h+T,=F 

M-+Av+fu+gC,h+T,  dY = G  
dt  (4) 

dh M -+R(u, h) = 0 
dt 

where u , v  and h are the nodal values for velocity and sea level. The detailed form of the 
matrices follows from (1)-(3) and is given in Reference 11. The equations are integrated in 
time using a time-centred scheme'' and a semi-implicit scheme.15 

Spectral wave equation formulation 

The wave equation form of the governing equations is derived by Lynch and Gray' by 
differentiating the continuity equation (3) with respect to time and substituting (1) and (2) for 
u and v, respectively. The resulting equations can be integrated in time using either explicit 
or implicit methods.' In addition, a comparison between the time-stepping and continuous in 
time (spectral) approaches is presented by Lynch.16 He finds that these approaches are 
equivalent for A t 4 0  in the former method. 
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The form of the governing equations used here is similar to that presented by Pearson and 
Winter' and extended by Jamart and Winter.12 (Also see References 16 and 17). Each of the 
dependent variables is considered to vary periodically with frequencies w,, which are 
specified beforehand: 

where u, is the velocity associated with the nth frequency, h, is the corresponding sea level, 
u,, and h,, are the corresponding modal amplitudes, and on is the angular frequency of the 
nth mode. The instantaneous values for the dependent variables can be found by synthesis: 

N 

u = u,+ 1 uOn exp (-iw,t) 

N 

u = u,+ 1 u,, exp (-iw,t) 
n = l  
N 

h = h,+ C it,, exp (-iw,t> 

These approximations for u and h are then substituted into the equations of motion (1)-(3). 
Multiplying each equation by exp (ha t )  and integrating over time, one derives the modal 
equations for the amplitudes.' Finally, the modal amplitudes for velocity are eliminated from 
the continuity equation with the use of the momentum equations. In the linearized form, the 
resulting equation is as follows: 

n = l  

where the advective terms (which contribute to the higher harmonics) and the surface wind 
stress are neglected, q = -ion + 7, and 7 is the linear coefficient for bottom stress. The full 
formulation of (7) may be found in Reference 8. The velocity can be calculated either from 
numerical diff erentiation'-'2 or by a FE approximation to the momentum equations. The 
latter method is used here and the resulting matrix equations are derived from (2) and (3) as 
before in (4). The equations are assembled and solved in the same manner as with the 
primitive equations. However, the equations are solved sequentially here rather than 
simultaneously. First the wave equation is solved for the complex modal amplitudes for sea 
level using the initial approximation for velocity. Then the momentum equations are solved 
using the new sea level modal amplitudes. For the non-linear system with advective terms 
and quadratic bottom stress, this solution is iterated until a convergence criterion is satisfied. 

Because I wish to compare the numerical results with analytical solutions, I use linearized 
bottom stress. Hence the equations for the fundamental frequencies are linear; the non- 
linear advective terms appear as forcing functions for the higher harmonics. As the 
dimensions in the numerical experiments make the non-linear terms negligible, I only 
calculate the amplitudes of the fundamental. 

NUMERICAL EXPERIMENTS 

Almost any numerical scheme will give reasonable results for a periodic forcing of a 
rectangular basin of constant depth.' As demonstrated by Gray and Lynch,2 both depth 
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variations and lateral variations in geometry can be used to test the sensitivity of various 
solution methods to the occurrence of short wavelength oscillations. What appears to matter 
is not how the variations are introduced but rather the resultant velocity and sea level 
gradients, particularly near the solid end boundary (in essence, the short wavelength modes 
are forced by a Gibbs’ phenomenon at the boundary). Large magnitude, small-scale 
variations cause steep gradients and strong oscillations in those models which are susceptible. 
The 6-node triangular network chosen for testing is the rectangular basin in Figure 1. For 
constant and linearly varying depth, good results are derived using equal order interpolation 
and mixed interpolation,’”’ and using the wave equation formulation.’ For quadratically 
varying depth, Gray and Lynch’ show that equal order interpolation leads to serve internode 
oscillations whereas the wave equation approach with time-stepping does not. Equivalent 
results were obtained with a quarter annulus network.’ The quadratically varying depth for a 
rectangular basin is used in this study to test the sensitivity of mixed interpolation methods 
and a spectral form of the wave equation. 

The test network has the same size and boundary conditions as that described by Gray and 
Lynch (Reference 2, Figure Ic) and shown here in Figure 1 for 6-node triangles. The 
network with 3-node triangles is generated by subdividing each of these 6-node triangles into 
four 3-node triangles. The basin has solid boundaries on three sides and a periodic variation 
in sea level imposed at the open boundary. Along the top and bottom boundaries, the 
normal component ( u )  of velocity is set to zero, whereas on the left solid boundary both 
components of velocity are set to zero. The variation in sea level on the right is specified as 
a cos (wt )  where a = 0.03048 m (0.1 ft) and o = 27i-/T where T =  12.4 h. The network is six 
nodal spacings across and eight nodal spacings high (fid by 8d, where d = 15.240 m 
(50,000 ft)). The bottom friction was linearized as T~ = TU, where T = and the Coriolis 
parameter was set to zero ( f=  0). 

For the time-stepping methods, the simulation was started at rest at t = O  and continued 
until a periodic solution was obtained (usually during the third or fourth cycle). Fifty 
timesteps per cycle were used. Although the non-linear advective terms were retained in the 

V 

Figure 1. The numerical grid used for the numerical tests (identical to the grid in Figure l(c) of Reference 2). The 
sea level is specified as a periodic function OR the right with amplitude of 0.03048 m and period of 12.4 h. The nodal 

spacing is 15,240 m. The depth varies quadratically as h = 3.048[(3/2)(x/L) + 112 where x = 0 on the left boundary 
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time-stepping models, their effects were negligible owing to the small amplitude wave. This 
fact has been verified by subsequent simulations. In keeping with this approach, only the 
amplitudes of the fundamental frequency are calculated in the spectral model. 

Using 9-node quadrilaterals, the solution for the primitive equations was derived by Gray 
and Lynch6 and is shown in Figures 2 and 4 (EOI9) for the in-phase (cosine) component of h 
and u. As may be noted, there are severe oscillations in h and u. Considerably better results 
were derived here using 6-node triangles (EOI6). I feel that the larger oscillations in the 
quadilaterals are due to the lower accuracy caused by the low order numerical integration 
(9-point Simpson’s rule using the nodes for the quadrilaterals vs. 7-point Gauss rule for the 
6-node triangles). 

The results for a 6-node triangular network with quadratic velocity and linear surface 
elevation are shown in Figures 2 and 3 for the in-phase and quadrature (sine) component of 
h, and in Figures 4 and 5 for the in-phase and quadrature component of u. Because the two 
time-stepping methods gave the same results, only the time-centred results are given here 
(MI). Although the sea level oscillation mode is removed, there is an oscillation in u due to 
the small-scale forcing in depth near the solid boundary, and this oscillation has larger 
magnitude than the case with equal order interpolation with the same elements (6-node 
triangles). As the velocity gradient is increased owing to a reduction in depth, the oscillation 
becomes larger. Horizontal eddy viscosity is used in this model with values of 1000cm2/s, 
which is at the upper limit for this size of grid spacing. As a note, viscosity values of 106 to 
lo7 cm2/s are required to damp these oscillations, whereas the solution will not converge 
with zero viscosity. The larger values are orders of magnitude larger than those one would 
expect to find in nature for these length scales. 
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Figure 2. Sea level variations in the x-direction when the sea level at the boundary is at a Faximum (wt = 0). A, 
analytical solutions; EOI9, quadrilateral elements with quadratic, equal-order interpolation (9 node); EOI6, 
triangular elements with quadratic, equal-order interpolation (6 node); MI, triangular elements with quadratic- 
linear, mixed interpolation (6  node); SWE, harmonic solution using 6-node triangles with equal-order interpolation. 
The solution for the quadrilateral is from Reference 2, and the analytical solution is described by Lynch and Gray9 
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Figure 3. Sea-level variations in the x-direction when the sea level at the boundary is zero (ot = d 2 ) .  The symbols 
are the same as Figure 2 

Finally, the results using the spectral wave equation are also shown in Figures 2-5 (SWE). 
Both the sea level and velocity exhibit smooth variations across the network and agree with 
the analytical solution. Using the 6-node triangular elements, this method was about 50 
times more efficient in computer time than using the mixed interpolation form of primitive 
equations with a semi-implicit time-stepping procedure and about 250 times more efficient 
than the time-centred scheme with Newton-Raphson iteration. 
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Figure 4. Velocity component in the x-direction computed when the sea level at the right boundary is at a 
maximum (ot = 0). The symbols are the same as Figure 2 
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Figure 5. Velocity component in the x-direction computed when the sea level at the right boundary is zero 
(ot = d 2 ) .  The symbols are the same as in Figure 2 

DISCUSSION 

In order to interpret the numerical results, I wish to present an overview of the applicable 
theoretical analysis. First I will consider the more straightforward case of the zero frequency 
modes and then the more general case of time dependent modes. 

The sensitivity of various numerical schemes to numerical oscillations is generally deter- 
mined by the wave behaviour at small wavelengths, specifically at the wavelength 2d defined 
by the grid spacing. An eigenmode analysis of various finite element discretizations of the 
shallow water equations has been presented by Walters and Carey.4 The general method is 
similar to a Fourier analysis of the discretized governing equations, (1)-(3). First the 
dependent variables are decomposed into a set of periodic disturbances of the form 

(u,  0, h )  = ( u,, oo, h,) exp i( kx + my - ot) (8) 
where w is angular frequency and k,  m are wavevectors in the x, y directions, respectively. 
Using this relationship in (1)-(3) where only the gravity wave terms are included, one derives 
the dispersion relation for a continuum: 

o2 = c2(k2 + m2) (9) 
where c2 = gH is the shallow water phase speed. 

The corresponding dispersion relations for representative numerical schemes tor approx- 
imating the shallow water equations can be found by discretizing (1)-(3) in space, then 
applying (8). Following this, the eigensolutions for simple grids are found and these solutions 
are examined with respect to the occurrence of spurious modes. 

Consider as an example, the one-dimensional element with linear interpolation for both h 
and u (LL). The dispersion relation for this scheme is given by 

2 -  gH 3sin(kd) 
w --( 

d 2  2+cos(kd)  
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and is shown in Figure 6, where both the frequency and wavevector have been normalized as 

so that for the exact solution = K = 1 for a wave with the minimum allowable wavelength 
in the grid ( 2 d ) .  For the numerical approximation (LL, Figure 6), 0 never attains unity but 
returns to zero at a wavelength of 2d. Because the curve is not monotonic, for a given value 
of w we may have multiple values of k. In particular, the occurrence of an eigenmode with 
w = 0 and a finite k is an anomaly that is associated with the spurious mode. For an enclosed 
domain with n elements each of length L with the boundary conditions u = 0 at x = 0 and I., 
the eigensolutions are for j = 0, 1 ,2 , .  . . , n 

hi = cos ( k x j )  cos ( w t )  

uj = (g/H)1’2 sin (kxi) sin (ot) 
k = ( 1 , 2 , 3 , .  . . , n-l)/L 

where k, and u, are the nodal values for sea level and for velocity. There are two solutions 
where w = O .  One is the hydrostatic solution where k = O  with k, = 1. The other is the 
spurious mode where k = rr/d and h, = (-l)J and u, = 0. The presence of this mode is a 
numerical artefact which is introduced by the finite spatial discretization of the shallow-water 
equations and it corresponds to internode oscillations in sea level of wavelength 2d. As an 
alternative interpretation, one can consider this mode as corresponding to a physical 
eigenmode of the continuous problem which has its phase speed reduced to zero by the 
numerical method and appears as a stationary internode oscillation. A similar analysis holds 
in two dimensions. Again, because w = 0 and u, = 0 for this mode, the governing equations 

wd =- 
X C  

Figure 6 .  One-dimensional dispersion relation for various schemes: A, continuum; LL, element with linear velocity 
and linear sea level; LC, element with linear velocity and piecewise constant sea level; QL, element with quadratic 

velocity (three nodes) and linear sea level (two end nodes) 
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(1) to ( 3 )  reduce to 

u = 0 ,  v = 0 ,  V h = 0  

Of special significance is the fact that the spurious mode is stationary. It is forced by small 
scale irregularities in forcing data and in the network. When the force vector has a projection 
in this node (such as a singularity or the occurrence of boundary layers) the spurious mode 
will be forced. Because this mode satisfies the homogeneous equation for w = 0, an arbitrary 
multiple of this mode can be added to the solution with no effect upon the dynamics, a 
feature which can raise serious questions about proper convergence. 

The one-dimensional dispersion relation for the mixed-interpolation scheme (QL) is also 
shown in Figure 6 where d is the spacing between the velocity nodes. Because sea level is 
interpolated linearly, its minimum wavelength is 4d rather than 2d for the velocity. Hence, 
there is no zero frequency spurious sea-level mode in this case. The extension to two 
dimensions is straightforward4 with the result that the 6-node triangle and the 9-node 
quadrilateral with quadratic velocity and Co linear sea level contain no spurious sea level 
modes. 

A particularly interesting case is that of the quadrilateral element with bilinear velocity 
and piecewise constant sea level (LC). The one-dimensional relation for LC is shown in 
Figure 6. In this case, there is no zero frequency spurious mode. By staggering the velocity 
and the sea level nodes, one creates an artificial grid spacing of d/2, where d is the distance 
between adjacent nodes for the same solution field variable. Thus, the w = 0 solution is 
moved down in wavelength to d which is below the cutoff wavelength for the grid. 

However, the two-dimensional case is not so well behaved. For a wave which propagates 
diagonally to the grid directions ( k  = m),  there is again an w = 0 eigenmode for k = m = r / d .  
This mode is in fact the infamous ‘chequerboard’ mode which satisfies 

u = 0 ,  Vh=O (14) 
and describes a piecewise-constant oscillation in sea level on alternate elements or grid 
blocks. 

Finally, one can modify the shallow water equations to form a wave equation to replace 
the continuity equation. This method is analysed in detail by Lynch and Gray’ and is 
characterized by monotonically increasing curve for w vs. k. As a result, the spurious, zero 
frequency solution does not exist in this case. Furthermore, a subgrid-scale dissipation model 
is apparently unnecessary because the short wavelength modes readily propagate through the 
network and thus do not accumulate energy. This last point underlines a fundamental 
difference between wave equation and primitive equation models. 

The dispersion analysis and modal behaviour described above concern the w = 0 modes or 
steady-state modes. These will result if an initial value problem evolves to a steady state. The 
behaviour of the time-dependent modes is analysed in a significant paper by Platzman’ who 
introduces the important concept of aliasing between wavevectors. Introducing this idea into 
the present analysis, we note that the solution corresponding to w = 0 and k = 0 has as its 
alias the (spurious) mode w = 0, k = r / d .  Further, the basic problem with extraneous modes 
is due to the fact that there are multiple roots for k as a function of w (LL, QL in Figure 6). 
In the numerical problem here, a rectangular embayment is forced with a sea level that 
varies periodically with an angular frequency w. For those schemes which have folded 
dispersion relations, both a long wave (desired) and a short wave (noise) component will be 
forced. The relative amplitude of these two components depends upon their respective 
admittances and is discussed in detail by Platzman.’ A serious problem occurs when the 
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wavelength of the spurious mode corresponds to a resonance of the basin, in which case the 
short wavelength mode can be relatively large. 

For the basin used in the numerical experiments, the spurious mode is far removed from a 
resonance, hence any of the numerical schemes can give good results for the constant depth 
case. However, for. the quadratically varying depth, the short wavelength modes are forced 
directly by small scale variations in depth. From an examination of the results, the observed 
modes are not the zero frequency modes but rather the time-dependent (aliased) modes. 
Hence there is a coupling between u and h via the time rate of change terms in (1) to ( 3 )  
which is absent in the zero frequency modes. The modes in the results appear to be 
generated by the sharp gradient in velocity at x = L, the closed boundary. The resultant 
oscillations in velocity are akin to a Gibbs’ phenomenon from the coarse nodal spacing and 
are coupled into sea level for LL or any other scheme which allows the short wavelength 
mode in sea level. 

The results for equal-order interpolation using both linear and quadratic elements were very 
sensitive to the network layout. For the network in Figure 1, there is an asymmetry from 
top to bottom, whereas the nodal support is homogeneous in the interior. Thus there tends 
to be a slope in the solution such that high values in sea level occur on one side and low 
values on the other. The solutions nearest these sides exhibit the most noise. The greatest 
amount of noise was generated using an inhomogeneous network where the nodal support 
varies from 4 to 8 elements at the corner nodes. The resulting errors have a strong projection 
in the spurious mode as one may see in the analysis of Platzman.’ 

Although mixed interpolation removes the spurious mode in sea level, it is still subject to 
the short wavelength mode in velocity. There is more energy being accumulated than can be 
dissipated with realistic values of eddy viscosity. This can be demonstrated numerically with 
the use of constant depth, linearly varying depth, and quadratically varying depth in the 
rectangular network. In the first, viscosity is not required; in the second, moderate values are 
required, whereas in the last large values are required. Refinement can be of help in that it 
removes the short wavelength forcing (effectively, it moves it to longer wavelengths) and thus 
does not excite the troublesome eigenmodes. However, the problem here is clearly not the 
fault of an improper subgrid-scale model; rather, it is due to the poor phase speed accuracy 
at small wavelengths. 

There are, in fact, other problems with these mixed-interpolation elements that are related 
to the fact that they are underconstrained with respect to continuity. In the continuum, the 
ratio of continuity equations to momentum equations is 1/2 (in two dimensions). However, 
for the 6-node triangle the constraint ratio is about 1/6, depending upon the element support 
of the corner nodes. When Dirichlet conditions on sea level are specified, the additional loss 
of continuity equations leads to poor velocity accuracy.” Although the spurious sea level 
mode does not appear with mixed interpolation as used here, the level of noise in the 
velocity solution is generally somewhat larger than equal order interpolation (quadratic u 
and quadratic h).  This appears to be due to the low constraint ratio and is common to all the 
simulations performed in the course of this analysis. 

The wave equation models maintain relatively good phase speed for all wavelength 
disturbances within the network. As may be seen, both the time-stepping’ and spectral forms 
of the wave equation gave good results for this difficult network (in the sense that large depth 
variations forced small wavelength modes). Thus one may surmise that propagation of the 
short wavelength eigenmodes (a monotonically increasing dispersion relation) rather than 
viscous damping is the more effective means of removing these modes from the network. 

Further, the spectral form of the wave equation is a very efficient method of solving 
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problems with periodic forcing, i.e. those characterized by line spectra. For aperiodic forcing 
during a finite time interval, time-stepping methods are easiest to use, although one may still 
approximate a continuous spectrum and solve for the Fourier coefficients. 

In spite of the good results, the wave equation approach is not without some difficulties. 
First, the coding is more complicated owing to the added complexity of the wave equation 
over the continuity equation, although this problem is not serious. Second, the wave 
equation approach has not been used extensively enough to define what forms of the 
momentum equations are most advantageous to use.9 For instance, Pearson and Winter’ 
interpolate velocity directly from the solution for h. On the other hand, the method 
presented here solves the finite element approximation to the momentum equations after 
solving the wave equation for h. The latter method is about a factor of 2 less efficient in run 
time but probably results in a better global approximation of the velocity field. 

CONCLUSIONS 

1. Using elements with equal-order interpolation and the primitive form of shallow water 
equations, short wavelength oscillations are present in most solutions except for trivial 
networks. 

2. Mixed-interpolation elements show improved results for sea level; however, the veloc- 
ity is still subject to short wavelength oscillations owing to poor phase speed behaviour 
and is generally inferior to the velocity solution using equal-order interpolation. For the 
more difficult networks with small-scale forcing, these oscillations cannot be removed 
with reasonable amounts of eddy viscosity which is used in an approximation to 
subgrid-scale dissipation. 

3 .  Wave-equation formulations are in general insensitive to short wavelength oscillations, 
primarily due to the good phase speed response. Depending upon the specific applica- 
tion, either time-stepping’ or spectral methods may be used. The latter is more ideally 
suited to problems with a small number of well-defined frequencies, such as tidal 
oscillations. 
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